Derivation of Newton's form of Kepler's Third Law
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Consider the case of circular motion (which simplifies the maths compared to elliptical
motion). Equation (1) represents Newton's Law of Universal Gravitation: the
two masses pull each other with equal and opposite forces #1zand 21 These forces
are equal to the centripetal forces #1and 'z keeping the masses orbiting their common centre
of mass (CM). The CM is where the moments #4171 and #;; are equal; it is the same as the

centre of balance.

The Centripetal force is given by:
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The expressions » are formulae for accelerations in circular motion.
For circular motion, velocity is given by:
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Y P {4) (WhereP is the period of the circular motion)

Substitute (4) into (2) to get:
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and an expression similar to equation (4) for %2 may be substituted into (3):
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But, according to Newton's first law (1),
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We saw above that the moments mr are equal, so "z ™1 and "2~ %~ "1

(from the diagram), which gives

Solve this to get:
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Multiply by 1 to get:
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From (5):
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Substitute for “1from (10):
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And re-arrange to make £ the subject:
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